LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - ECONOMICS
 FOURTH SEMESTER - APRIL 2010

ST 4207 - ECONOMETRICS

Date \& Time: 19/04/2010 / 9:00-12:00

PART A

Answer all the questions $\quad 10 \times 2=20$ marks

1. Give the axiomatic definition of probability.
2. If 5 fair coins are tossed simultaneously, find the probability of getting at least 2 heads.
3. If $f(x)=x^{2} / 55, x=0,1,2,3,4,5 ; f(x)=0$, otherwise, find $E(X)$.
4. Define Poisson distribution.
5. Write a note on maximum likelihood estimation.
6. Differentiate between mathematical and econometric model.
7. Show that $\widehat{\beta}_{1}$ is unbiased for β_{1} for a simple regression model $Y_{i}=\beta_{1}+\beta_{2} X_{i}+u_{i}$.
8. Define R^{2} and adjusted R^{2}.
9. When are dummy variables introduced in regression model ?
10. Define variance inflation factor.

PART-B

Answer any five questions . $5 \times 8=40$ marks
11. A husband and a wife appear in an interview for two vacancies in the same post.The probability of husband's selection is $1 / 7$ and that of wife is $1 / 5$. What is the probability that (i) both of them will be selected, (ii) only one of them will be selected, (iii) none of them will be selected?
12. Consider 3 urns with the following composition:

Urn I: 5 white , 6 black and 4 red balls
Urn II : 4 white , 5 black and 7 red ball
Urn III : 3 white, 7 black and 6 red balls
One urn was chosen at random and three balls were drawn from it.
They were found to be 2 white and 1 red. What is the probability that the chosen balls have come from Urn I, Urn II or Urn III ?
13. Test whether X and Y are independent random variables given that $\mathrm{f}(\mathrm{x}, \mathrm{y})=4 \mathrm{xy} \quad 0<\mathrm{x}<1,0<\mathrm{y}<1 ; \quad \mathrm{f}(\mathrm{x}, \mathrm{y})=0 \quad$ otherwise
14. A filling machine is expected to fill 5 kg of powder into bags. A sample of 10 bags gave the weights $4.7,4.9,5.0,5.1,5.4,5.2,4.6,5.1,4.6$, and 4.7. Test whether the machine is working properly at 5% level of significance.
15. Derive the least square estimates of β_{1} and β_{2} for the regression model $Y_{i}=\beta_{1}+\beta_{2} X_{i}+u_{i}$
16. Explain the properties of OLS estimators.
17. Explain polynomial regression models.
18. Write the sources for multicollinearity among regressors.

PART-C

Answer any two questions .

$$
2 \times 20=40 \text { marks. }
$$

19. (a) Let $\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=21 \mathrm{x}_{1}{ }^{2} \mathrm{x}_{2}{ }^{3}, \quad 0<\mathrm{x}_{1}<\mathrm{x}_{2}<1$ and zero elsewhere, be the joint probability function of X_{1} and X_{2}. Find the conditional mean and variance of X_{1} given $X_{2}=x_{2}, \quad 0<x_{2}<1$.
(b) Define normal distribution and write any five of its properties.
20. (a) A typist kept a record of mistakes made per day during 300 working days in a year. Fit a Poisson to the following data and test the goodness of fit at 1% level of significance.
Mistakes/day: $\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$
No. of days : $\begin{array}{llllllll}143 & 90 & 42 & 12 & 9 & 3 & 1\end{array}$
(b) If $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$ is a random sample from $\mathrm{N}(\theta, 1),-\infty<\theta<\infty$, find the MLE of θ.
21. Fit a simple linear regression model $Y_{i}=\beta_{1}+\beta_{2} X_{i}+u_{i}$ for the following data on weekly family consumption expenditure Y (in \$) and weekly family income X (in \$):

Y :70 $\begin{array}{llllllllll}65 & 90 & 95 & 110 & 115 & 120 & 140 & 155 & 150\end{array}$
X : 80
Also find the error sum of squares and variances of β_{λ} and β_{2}.
22. (a) Explain the procedure for testing the significance of individual regression coefficients in a multiple regression model.
(b) Discuss the following: (i) log-linear model (ii) semi-log model (iii) reciprocal model (iv) logarithmic reciprocal model.

